Task 4.6: OXICIDE (on shore pilot trials)

TNO Environment, Energy and Process Innovation Apeldoorn, the Netherlands

> Jan Willem Assink Peter Bressers

MARTOB-meeting Stockholm Oct. 2003

OXICIDE reactor: the principle

Cathode: $O_2 + 2H^+ + 2e^- \longrightarrow H_2O_2$ Anode: $2H_2O \longrightarrow O_2 + 4H^+ + 4e^-$

Planning and progress

		Month								
	Action	March	April	Мау	June	July	Aug.	Sept	Oct.	Status
1.1	design cell	< March	1							done
1.2	prod. first cell									done
1.3	lab test cell									done
2.1	design pilot									done
2.2	prod. pilot									done
2.3	lab test pilot									canceled
3	pilot test on location									started
4	evaluation of results									started

Generation-2 reactor design (first scale-up):

- Improved oxygen feed to seawater using Cel gard module
 → higher oxygen concentrations
- New electrochemical cell design
 - New dimension electrode (150 x 200 mm² graphite felt)
 - Higher flow rates for catholyte and anolyte (200-500 l/h)
- Cell made by: Van den Heuvel Watertechnologie
- Laboratory tests aimed at (higher) performance of cell

Higher H_2O_2 production rate (g/h per m²)

Generation-2 electrochemical cell:

Generation-2 electrochemical cell: laboratory tests

H_2O_2 production I = 4.5A, 5 liter model seawater

Generation-2 electrochemical cell: laboratory tests with 3 felts

Generation-2 electrochemical cell: results laboratory tests

- increased flow rate
- higher oxygen concentration
- best graphite felt

	generation-1	generation-2
H_2O_2 production rate	14 g/m²h →	56 g/m ² h

Further improvement in Generation-3 reactor: i.e. improved current connection to the graphite felt

Design generation-3 electrochemical cell

170

Generation-3 electrochemical cell

Design pilot installation

- Two OXICIDE units (cell guard and electrochemical cell)
- Both parallel (high throughput) and series (high H₂O₂ concentration) circuits possible

- made by: Van den Heuvel Watertechnologie
- in-situ H₂O₂ sensor
- Cl₂ detection
- spill tray with leakage detector

11

Oct 2003

Pilot installation with 2 Oxicide cells

Pilot installation Oxicide

- H_2O_2 detector

O₂ detector

Onshore test location Den Helder (the Netherlands)

Den Helder

Experiments Oxicide pilot onshore

Problems faced:

- Delay in delivery of ballast water pump
- Start-up problems with ballast water pump
- Very low phytoplankton concentrations:
 - Not possible to determine the activity of the plankton

Experiments Oxicide pilot onshore

- Series and Parallel tests with two generation-3 reactors Low H_2O_2 production rate: 0.7 ppm @ 500 l/h (!)
- Generation-2 reactor produces according to lab results:
 6.0 ppm @ 250 l/h with only one cell

Possible causes of performance difference:

- Coating titanium DSA electrode
- Membrane (different batches)
- Graphite felt
- Electrical contacts, i.e. between carbon and graphite felt
- (minor) Differences in cell dimensions

Comparison Gen-2 and Gen-3 DSA electrodes (in Gen-2 reactor)

Results economic evaluation Gen-1 and Gen 2-reactor

Case:

- 2000m³ ballast water
- 24 hours treatment time
- 15 g H_2O_2 / m^3

	Generation 1 (WP 3)	Generation 2 (WP 4)
H ₂ O ₂ production rate (g/m ² h)	14	56
Membrane area needed (m ²)	120	30
Equipment weight (kg)	2400	600
Footprint equipment (m ²)	8.75 + 10 = 18.75	4.4 + 6 = 10.4
Investment costs (€)	1,550,000	387,500
Total costs per year (€/y)	234,491	60,257
Costs per m ³ ballast water (€/m ³)	2.34	0.60

Preliminary conclusions task 4.6

- Oxygen feed to the water improved by using Cel gard
- First up-scaling succesfull
- 4 times higher production rate with Gen-2 reactor (i.r.t. Gen-1); further improvements are possible
- Gen-3 reactor has unexplained low peroxide production rate

Further plans Task 4.6

- Systematic experiments to find the origin of the problem with the Gen-3 reactor
- Finishing experiments with the pilot
- Biological efficacy performance check
- Duration experiment

Remarks regarding the onboard installation feasibility

- Location: in-side, close to the ballast tanks or pump. The location should be well ventilated
- Heat: from pumps and power source (small)
- Vibrational and noise effects:

non other than those of the ballast water pumps (anolyte pump relatively small)

Technology Implementation Plan (TIP) Results

- **1.** Biological efficacy of H_2O_2 (type B)
- 2. In-situ electrochemical hydrogen peroxide production, using the Oxicide reactor (type B)

Market application sectors (result 2):

- 17 Manufacture of textiles
- 21 Man. of pulp, paper and paper prod.
- 24 Man. of chemicals and chemical prod.
- 35.1 Building and repair of ships and boats
- 41 Collection, purification and distribution of water
- 55 Hotels and restaurants
- 61.1 Sea and coastel water transport
- 92 Recreation, cultural and sporting activities

Technology Implementation Plan (TIP) in-situ electrochemical H₂O₂ production

Items (about the results)	Estimated (or future) quantity ^b
Time to application / market	24 months
Number of (public or private) entities potentially involved	
in the implementation of the result :	2+
of which : number of SMEs :	2
of which : number of entities in third countries (outside EU) :	0
Targeted user audience: # of reachable people	2000
# of S&T publications (referenced publications only)	1
# of publications addressing general public (e.g. CD-ROMs, WEB sites)	4
# of publications addressing decision takers / public authorities / etc.	3
Visibility for the general public	No

