A European Community Funded Project
for
On-board Treatment of Ballast Water
and Application of Low Sulphur Fuels

Presented, on behalf of MARTOB Consortium, by
Ehsan Mesbahi

MEPC 47
MARTOB Presentation 7th March 2002 London
Europe has the longest coastline of all the continents in the world. Currently, European Economic Area (EEA) ship-owners represent about 40% of the world merchant fleet. 90% of the EU’s external trade and 40% of trade by volume between the member States are carried by sea. As a consequence, hundreds of non-indigenous species from different parts of the world have been introduced into European waters, particularly Northern Europe, through ballast water. Although many of them have not had any serious effects on the ecosystem yet, some have created serious problems and incurred considerable costs in remedial actions.
Objectives:

1. To investigate methodologies and technologies for preventing the introduction of non-indigenous species through ships’ ballast water,

2. To develop design tools and treatment equipment to be used in the further development of ballast water treatment techniques,

3. To assess the effectiveness, safety, and environmental and economic aspects of current and newly developed methods,

4. To develop cost-effective (capital and operating), safe, environmentally friendly onboard ballast water treatment methods which have a minimum impact on ship operations,

5. To produce guidelines for crew training and criteria for selecting an appropriate ballast water management method.
Partners:

UNEW - University of Newcastle upon Tyne, UK
AAU - Aabo Akademi University, Finland
VTT - VTT Industrial Systems, Finland
TNO - Environment, Energy and Process Innovation, Netherlands
TME - Institute for Applied Environmental Economics, Netherlands
SINTEF - Applied Chemistry, Norway
FRS - Fisheries Research Services, UK
IFREMER - French Research Institute for the Exploitation of the Sea, France
ABC - Association of Bulk Carriers, UK
AL - Alfa Laval AB, Sweden
BERSON - Berson Milieutechniek B.V., Netherlands
EPE - Environmental Protection Engineering S.A., Greece

MEPC 47
MARTOB Presentation 7th March 2002 London
Partners:

HW-Van den Heuvel Watertechnologie, Netherlands
IT-The International Association of Independent Tanker Owners, UK
SOU-Souter Shipping Ltd., UK
SSPA-SSPA Sweden AB
TQ-Three Quays Marine Services, UK
ICS-International Chamber of Shipping, UK
BV-Bureau Veritas, France
MT-(MARINTEK) Norwegian Marine Technology Research Institute, Norway
SMP-Shell Marine Products, Norway
WW-Wallenius Wilhelmsen Lines, Norway
MAN-MAN B&W, Denmark
FT-Fueltech AS, Norway
NSA-Norwegian Shipowner Association, Norway

MEPC 47
MARTOB Presentation 7th March 2002 London
Acknowledgement

MARTOB is partly funded by the European Commission under the 5th Framework Programme for research, technological development and demonstration activities, GROWTH,

and is managed by the Direction-General for Energy and Transport

MEPC 47
MARTOB Presentation 7th March 2002 London
MARTOB

Programme:

a) Data collection and proposed methods

b) Further development and demonstration of selected methods

c) Installation of large/full-scale systems and sea trials

d) Applications, reviews and recommendations

MEPC 47
MARTOB Presentation 7th March 2002 London
a) Data collection and proposed methods

1- Legislative update and future indication

2- Update of aliens in European water

3- Indirect environmental aspects and risk assessment

4- Current methods and limitations

5- Programme of requirements for ballast water treatment

6- Framework of Evaluation
b) Further development and demonstration of selected methods

1- Design of system

2- Assessment of direct and indirect environmental aspects

3- Verification of the conformity of the system design

4- Definition and strategy of large and full-scale trials
c) Installation of large/full-scale systems and sea trials

1- Validation of system installation

2- System installations and sea trials

3- Assessment of biological effectiveness and direct and indirect environmental aspects
d) Applications, reviews and recommendations

1- Large scale trials review

2- Summary of direct and indirect environmental aspects

3- Biological justification of developed methods
a-1) Legislative update and future indication

<table>
<thead>
<tr>
<th>Local Regulations</th>
<th>International Legal Instruments With Programs/ Activities pertaining to Invasive Alien Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>Global Conventions/Treaties</td>
</tr>
<tr>
<td>Australia</td>
<td>European</td>
</tr>
<tr>
<td>Canada</td>
<td>North American</td>
</tr>
<tr>
<td>Chile</td>
<td>African</td>
</tr>
<tr>
<td>Israel</td>
<td>Asia/Pacific</td>
</tr>
<tr>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
</tr>
</tbody>
</table>

MEPC 47
MARTOB Presentation 7th March 2002 London
a-2) Update of aliens in European water

AAU, UNEW, TNO, IFREMER, EPE, SSPA

ALIENS AND THEIR IMPACTS IN EUROPEAN COASTAL WATERS

REGIONAL OVERVIEW

- North-eastern Atlantic coast
- North Sea
- Baltic Sea
- British and Irish coasts
- Mediterranean Sea
- Black Sea and the Sea of Azov
- Caspian Sea

ECOLOGICAL IMPACTS

RESOURCES AT RISK

- Nuisance Species
- Economic Impacts
 - Water-based Technology
 - Fisheries
 - Parasites and Pests on Fish and Shellfish
 - Interference with Research and Monitoring
- Human Health

RISK ASSESSMENT OF AQUATIC SPECIES INVASIONS

MEPC 47

MARTOB Presentation 7th March 2002 London

DATABASES ON BALLAST WATER

AND INTRODUCED AQUATIC SPECIES

European Databases
North American Databases
Australian and New Zealand Databases
Global Databases

BALLAST WATER DISCHARGES

AND SHIPPING PATTERN IN EUROPE

European Shipping Pattern
Ballast Water Releases In
European Waters
a-3) Indirect environmental aspects and risk assessment
SSPA, AAU, TME

RISK AND SAFETY ISSUES
- Hazards, Risk and Safety Assessment
- Assessment of Methods

INDIRECT ENVIRONMENTAL IMPACTS
- Assessment of Environmental Impacts

NON-ENVIRONMENTAL ASPECTS
- Existing cost data
- Identification of data gaps
- Potential economic benefits and economic disadvantages
- Selection of time horizon and discount rate

METHODS:
- Ballast water exchange
- Low Temp. Thermal Treatment
- UltraViolet Irradiation (UV)
- Filtration
- HydroCyclone
- Biocides
- Shore-Based Treatment Methods
a-4) Current methods and limitations
FRS, UNEW, IFREMER, BERSON, EPE, TQ

Methods that have been assessed on a pilot or full scale
- Ballast water exchange
- Filtration
- Cyclonic separation

Methods in the first stages of development
- Biocides
- Gas super saturation
- Natural air injection
- Electro-ionisation
- Use of fresh or treated water
- Shore based treatment
a-5) Programme of requirements for ballast water treatment

UNEW, VTT, TNO, TME, SINTEF, ABC, AL, BERSON, EPE, HW, IT, SOU, SSPA

Selected Treatment Methods

Thermal Treatment

De-Oxygenation

UV/US and Ozone Systems

Oxicide

Hurdle Technologies

MEPC 47

MARTOB Presentation 7th March 2002 London
a) Programme of requirements for ballast water treatment

UNEW, VTT, TNO, TME, SINTEF, ABC, AL, BERSON, EPE, HW, IT, SOU, SSPA

General requirements
Ship requirements and limitations

Ship Types and BW Volumes
Pump Capacity
Ballast Tank Sizes and Design
Equipment Space Requirements
Vessel Transit Patterns
Ship requirements

Water quality

In Ballast Water and selected Ports
In coastal areas
Changes in Water Quality over Time
Water Quality Standards
Economic and environmental effects

MEPC 47
MARTOB Presentation 7th March 2002 London
a-6) Framework of Evaluation (1)
TME, UNEW, SSPA, BV

BOUNDARIES FOR TESTING

Evaluation criteria

SAMPLING AND TEST PROTOCOL

Water quality Standards

Species selection

Composition of a test mixture

Assessing biological effectiveness

MEPC 47
MARTOB Presentation 7th March 2002 London
MARTOB

Proposed Standard Sea Water

MARTOB Soup

Benthic Larvae

Nereis virens – Nectochaete larvae

Calanoid copepod

Acartia sp

Diatoms

Thallasiosira sp

Harpacticoid copepod

Tisbe sp

Dinoflagellates

Alexandrium sp
MARTOB Proposed Standard Sea Water

<table>
<thead>
<tr>
<th></th>
<th>Maximum field densities (in div. s m(^{-3}))</th>
<th>Standard mix composition (in div. s m(^{-3}))</th>
<th>Standard mix composition of a 50 l test solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benthic Larvae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nereis virens – Nectochaete larvae</td>
<td>740</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>Harpacticoid copepod</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tisbe sp</td>
<td>807</td>
<td>500</td>
<td>25</td>
</tr>
<tr>
<td>Calanoid copepod</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acartia sp</td>
<td>159,659</td>
<td>2500</td>
<td>125</td>
</tr>
<tr>
<td>Diatoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallasiosira sp</td>
<td>3×10(^9)</td>
<td>3.5×10(^8)</td>
<td>175×10(^5)</td>
</tr>
<tr>
<td>Dinoflagellates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexandrium sp</td>
<td>80×10(^6)</td>
<td>10×10(^6)</td>
<td>50×10(^4)</td>
</tr>
</tbody>
</table>

MEPC 47
MARTOB Presentation 7th March 2002 London
MARTOB

Laboratory-Scale Tests on selected BW Treatment Techniques

Biological Effectiveness
(Standard Test Protocol)

Corrosivity of Treated BW

Standard Sea Water
(MARTOB Soup)

MEPC 47
MARTOB Presentation 7th March 2002 London
Protocol for Laboratory Testing (1)

1. Artificial seawater for the test should be made up following the manufacturer’s instructions. The seawater should be kept in the dark at 10-15°C until required, salinity 33-35, pH ~8.3

2. If a turbid sample is required add 1g solid per litre of water. To a 50l sample add 50gm kaolin for inorganic matter or 50gm flour if organic suspended matter is required. This will produce a turbid suspension, representative of a relatively highly turbid estuary.

3. Biological test organisms should be kept in separate containers until the mixture is required and assembled just before use.

4. Once prepared the mixture must be kept cool (10-15°C) and in the dark.

5. 10 × 1l samples (5 for zooplankton and 5 for phytoplankton) should be collected before the test commences and fixed as control samples.

MEPC 47
MARTOB Presentation 7th March 2002 London
6. Zooplankton – Each of the 5 x 1l samples should be treated separately as follows:

- Prepare a stock solution of stain by dissolving 1.0g Neutral red powder in 1l distilled water.
- Add 30 ml of stock stain solution to each litre sample
- Leave for 60 min
- Prepare stock solution of buffered fixative by adding 25g borax to 1l 10% formalin
- Prepare stock solution of stain by adding 40ml 1N Sodium Acetate to 1l 10% buffered formalin
- Add 40ml stock fixing solution to each litre sample
- Store samples overnight at 2-3C

Phytoplankton - to 5 of the 1l samples add (currently under development)
7. The remaining mixture should then be introduced into the treatment process.

8. 10 x 1l samples should be collected immediately on completion of the tests for the assessment of biological effectiveness and preserved in the same way as the control samples i.e. 5 for zooplankton and 5 for phytoplankton (see 4)

9. When the zooplankton samples have been settled replicate sub-samples will be examined microscopically in haematocrit chambers and the survivorship of each species recorded.

10. Phytoplankton samples will be counted (currently under development)

11. Biological effectiveness of each trial will be characterized by the percentage kill of each test organism type.
ENVIRONMENTAL IMPACTS

Direct Environmental Impact
Indirect Environmental Impact

HEALTH AND SAFETY ASPECTS

Operational Aspects
Storage and Handling of Chemicals and Residuals

ECONOMIC VIABILITY

Cost Effectiveness

ON-BOARD SHIP APPLICABILITY

Criteria for assessment

MEPC 47
MARTOB Presentation 7th March 2002 London
The ballast water regulation has been on the table for some years and could take more time to resolve. As such, more and more countries have adopted local ballast water regulations to prevent the introduction of alien invasive species to their waters. It is with optimism that a foolproof water ballast management programme that is agreed by all, could be reached within the near future.
With the completion of MARTOB programme, it is envisaged that the results of this programme would be able to provide an insight on global ballast water legislative measures and recommendations on probable future ballast water treatment solutions through research and shipboard trials.
In addition recommendations resulting from this programme of research on ballast water management would provide another source of information to various international organisations like IMO, ICES, IOC and other maritime organisations, marine environment agencies and regulatory bodies.